Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle.

نویسندگان

  • Carsten Lundby
  • Henriette Pilegaard
  • Jesper L Andersen
  • Gerrit van Hall
  • Mikael Sander
  • Jose A L Calbet
چکیده

Increased skeletal muscle capillary density would be a logical adaptive mechanism to chronic hypoxic exposure. However, animal studies have yielded conflicting results, and human studies are sparse. Neoformation of capillaries is dependent on endothelial growth factors such as vascular endothelial growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA levels and capillary density in muscle biopsies from vastus lateralis obtained in sea level residents (SLR; N=8) before and after 2 and 8 weeks of exposure to 4100 m altitude and in Bolivian Aymara high-altitude natives exposed to approximately 4100 m altitude (HAN; N=7). The expression of HIF-1alpha or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than in SLR (2.4+/-0.1 vs 3.6+/-0.2; P<0.05). In conclusion, human muscle VEGF mRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis.

We have previously shown, using a Cre-LoxP strategy, that vascular endothelial growth factor (VEGF) is required for the development and maintenance of skeletal muscle capillarity in sedentary adult mice. To determine whether VEGF expression is required for skeletal muscle capillary adaptation to exercise training, gastrocnemius muscle capillarity was measured in myocyte-specific VEGF gene-delet...

متن کامل

Effects of acute exercise, exercise training, and diabetes on the expression of lymphangiogenic growth factors and lymphatic vessels in skeletal muscle.

Blood and lymphatic vessels together form the circulatory system, allowing the passage of fluids and molecules within the body. Recently we showed that lymphatic capillaries are also found in the capillary bed of skeletal muscle. Exercise is known to induce angiogenesis in skeletal muscle, but it is not known whether exercise has effects on lymphangiogenesis or lymphangiogenic growth factors. W...

متن کامل

Impact of Aerobic Exercise on Restoration of Soleus and Gastrocnemius Muscles Microcirculations in Wistar Rats with Chronic Heart Failure

ABSTRACT &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Background and Objective: Scientific evidence reveals that the density of skeletal muscle microcirculations decreases in the patients with chronic heart failure. Therefore, this study aimed to determine the impact of submaximal aerobic exercise training on restoration of fast/slow-twitch muscle fibers microcirculation in rats with myocard...

متن کامل

Angiopoietin-1 enhances skeletal muscle regeneration in mice.

Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myo...

متن کامل

Capillary regression in vascular endothelial growth factor-deficient skeletal muscle.

Skeletal muscle angiogenesis is an important physiological adaptation to increased metabolic demand, possibly dependent on vascular endothelial growth factor (VEGF), the increased expression of which is a known early response to exercise. To test the hypothesis that VEGF is essential to muscle capillary maintenance, we evaluated the consequences of targeted skeletal muscle inhibition of VEGF ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 207 Pt 22  شماره 

صفحات  -

تاریخ انتشار 2004